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the jigsaw meshing library.
JIGSAW is a new Delaunay-based isotropic mesh generation package designed for general two- and three-
dimensional meshing problems [1,2,3]. This new environment seeks to combine a number of useful features:

1. A flexible geometry-agnostic formulation based on restricted Delaunay tessellations, supporting generalised 
geometry inputs including piecewise linear complexes, analytic forms and implicit representations.

2. A hybrid Frontal-Delaunay refinement strategy – seeking to achieve very high-quality Delaunay-based mesh 
generation through use of a hybrid, advancing-front type strategy. Using an appropriate set of off-centre 
point-placement rules, this approach aims to combine the best features of classical Delaunay-refinement and 
advancing-front type techniques, generating high-quality Delaunay meshes that satisfy a set of theoretical 
bounds and convergence guarantees.
 
3. A new, publicly-available meshing interface, providing access to a suite of two-and three-dimensional 
Delaunay-type meshing algorithms via an easy-to-use MATLAB / OCTAVE scripting interface. 
 

restricted delaunay tessellation.
Geometrical features are approximated using a hierarchy of Delaunay sub-complexes [4,5,6]. The bounding 
Delaunay complex DEL(X) contains the restricted sub-complexes DEL | Γ (X), DEL | Σ (X) and DEL | Ώ(X), providing 
discrete approximations to the curve network Γ, the surface patches Σ and the interior volume Ώ.  
DEL | Γ (X), DEL | Σ (X) and DEL | Ώ(X) contain the 1-, 2- and 3-simplexes that best approximate the input curve, 
surface and volume features, respectively. 

Restricted Delaunay techniques exploit the duality between Delaunay tessellations and Voronoi complexes, 
computing membership for DEL | Γ (X), DEL | Σ (X) and DEL | Ώ(X) by evaluating intersections between VOR(X) and 
the input features Γ, Σ and Ώ. Such intersections induce a set of circumscribing balls B(Ci,Ri) associated with 
the faces of DEL(X), providing a set of element-wise refinement points Ci, and a bound on surface discretisation 
error (Hausdorff distance).

OFF-CENTRES AND RESTRICTED DELAUNAY TESSELLATION:  
high-quality mesh generation for general planar, surface and volumetic geometries 

25TH INTERNATIONAL MESHING ROUNDTABLE

darren engwirda (engwirda@mit.edu)  
dept. of earth, atmospheric and planetary science, massachusetts institute of technology

a restricted delaunay-refinement algorithm.
Following conventional methodology [4,5,6], a coarse initial Delaunay triangulation is progressively refined until 
all elements are good. At each step, any that violate a set of constraints are identified and the worst offending 
elements eliminated. Elimination is achieved through the insertion of additional Steiner-vertices located at the 
refinement-points associated with the elements in question.

FUNCTION DELAUNAY-MESH(Γ,Σ,Ώ,DEL | Γ (X),DEL|Σ(X),DEL|Ώ(X))

    WHILE (BAD(E) or BAD(F) or BAD(T))
        IF (BAD(E)) THEN
            Refine *worst* restricted edge Ei. Insert *refinement-point*
            for Ei and update DEL | Γ (X), DEL|Σ(X), DEL|Ώ(X).
        ELSE
        IF (BAD(F)) THEN
            Refine *worst* restricted face Fi. Insert *refinement-point*
            for Fi and update DEL | Γ (X), DEL|Σ(X), DEL|Ώ(X). Careful
            not to encroach edges in E.
        ELSE
        IF (BAD(T)) THEN
            Refine *worst* restricted tria Ti. Insert *refinement-point*
            for Ti and update DEL | Γ (X), DEL|Σ(X), DEL|Ώ(X). Careful
            not to encroach edges in E or faces in F.
        END IF
   END WHILE

END FUNCTION

Elements are considered to be bad based on a combination of geometrical and topological constraints, 
including radius-edge ratios, surface-discretisation error measures, element size metrics and local topological 
considerations.  
 

frontal-delaunay methods and “off-centres”.
Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refinement techniques, 
in which a Delaunay triangulation is used to define the topology of a mesh while new vertices are inserted 
according to an advancing-front type approach.

Standard Delaunay-refinement techniques can be transformed to Frontal-Delaunay type algorithms through the 
selection of appropriate off-centre refinement rules [7,1,2,3]: 

 
1A. Edge-refinement: A locally size-optimal point can be formed by computing intersections between a ball of 
radius H(Xi) and the curve network Γ. Balls are centred at a frontal vertex. Such a strategy is designed to satisfy 
local mesh-size constraints.
 
 
2A. Face-refinement: A locally size-optimal point can be found by computing intersections between a disk of 
radius H(Xm) and the surface patches Σ. The disk is centred on a frontal edge of the associated face. Such a 
strategy is designed to satisfy local mesh-size constraints.
 
2B. Face-refinement: A locally shape-optimal point can be found by computing intersections between a disk 
of radius ρ*EMIN and the surface patches Σ. The disk is centred on a frontal edge of the associated face. This 
construction attempts to satisfy local radius-edge constraints. 
 
 
3A. Tria-refinement: A locally size-optimal point can be found by computing intersections between a ball of 
radius H(Xm) and a local Voronoi vector. Such a strategy is designed to satisfy local mesh-size constraints.
 
3B. Tria-refinement: A locally shape-optimal point can be found by computing intersections between a ball of 
radius ρ*FMIN and a local Voronoi vector. This construction attempts to satisfy local radius-edge constraints. 
 

In each case, it is important to limit off-centre selection to a local safe-region – an adjacent sub-region of the 
Voronoi complex bounded by local element circumcentres. This constrained point-selection process preserves 
the convergence guarantees of the underlying Delaunay-refinement algorithm by falling-back to standard 
circumcentre-based refinement in limiting configurations.
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JIGSAW-DR
Meshes for the SHUTTLE geometry using the 

Delaunay-refinement algorithm, showing normalised 
histograms of element volume-length ratio, dihedral-

angle and relative edge-length. The mesh contains 
217,214 surface triangles and 3,644,728 tetrahedrons. 

Comparing results, it can be seen that the Delaunay-
refinement algorithm generates slightly larger 

meshes with degraded element quality characteristics 
and mesh-size conformance. Degradation in element 

volume-length and angle distributions is especially 
marked in the case of surface triangles, though a 
similar reductions are also evident in the case of 

tetrahedral elements. Comparisons of distributions 
of element relative-length reveal the largest relative 
differences between algorithms, with the Delaunay-
refinement approach displaying significantly weaker 

conformance to the imposed mesh-size function.

JIGSAW-FD
Meshes for the SHUTTLE geometry using the Frontal-
Delaunay algorithm, showing normalised histograms 
of element volume-length ratio, dihedral-angle and 
relative edge-length. The mesh contains 191,470 
surface triangles and 3,436,473 tetrahedrons. 
Comparing results, it can be seen that the Frontal-
Delaunay algorithm generates slightly smaller meshes 
with improved element quality characteristics and 
mesh-size conformance. Improvements in element 
volume-length and angle distributions is especially 
marked in the case of surface triangles, though a 
similar enhancement is also evident in the case of 
tetrahedral elements. Comparisons of distributions 
of element relative-length reveal the largest relative 
differences between algorithms, with the Frontal-
Delaunay approach displaying significantly improved 
conformance to the imposed mesh-size function.

                                     
      
       
      
         
        
                               

    


